
Observers & Operations
SketchUp 2016 Changes and Best Practices

Previous Observer Behaviour

StartOperation(...)

CommitOperation(...)

AddLayer(...)User Adds Layer

Problem: Observer is triggered immediately while the operation is still open. This means the observer
could disrupt the undo stack by starting a new operation while one is already active. A second problem
would be if the observer removed entities the current operation is about to use.

onLayerAdded(...)

start_operation(...)

SketchUp Core Ruby APIUser Action

Previous Observer Behaviour
SketchUp CoreRuby API Ruby API

Problem: The Ruby API creates intermediate operations and the ModelObserver doesn't filter them out.
This makes it impossible to know when a Ruby operation has truly ended. This is why we had to resort to
the ugly workaround of using a timer to delay model changes: github.com

StartOperation(...)

onLayerAdded(...)

start_operation(...)

layers.add(...)

layers.add(...)

commit_operation()

CommitOperation(...)

AddLayer(...)

OpenOperation(...)

CommitOperation(...)

CommitOperation(...)

OpenOperation(...)

onTransactionCommit(...)

onTransactionStart(...)

onTransactionCommit(...)

onTransactionStart(...)

onTransactionCommit(...)

onTransactionStart(...)

https://github.com/SketchUp/sketchup-safe-observer-events

SU2016 Observer Behaviour
SketchUp CoreRuby API Ruby API

Change: Ruby API observer events are queued up until the active operation is done. Intermediate Ruby
operations doesn't trigger the ModelObserver's onTransaction* events.

start_operation(...)

layers.add(...)

layers.add(...)

commit_operation()

onTransactionCommit(...)

onLayerAdded(...)

onTransactionStart(...)

StartOperation(...)

CommitOperation(...)

AddLayer(...)

OpenOperation(...)

CommitOperation(...)

CommitOperation(...)

OpenOperation(...)

RecordNotification(..)

Dispatch(..)

NotificationManager

onLayerAdded(...)

Notifications are still sent out after a
user interaction even if a Ruby
operation is left open. This is to
ensure that extensions such as
render engines can update their live
render even though an extension
failed to close its operation.

Such user interactions include:

‣ Toolbar commands
‣ Menu commands
‣ Observer calls
‣ Ruby Tool callbacks
‣ Timers

SU2016 Observer Behaviour

...except...

module Example

 def self.operation_bad_example
 model = Sketchup.active_model
 entities = model.active_entities
 model.start_operation('Hello World', true)
 5.downto(0) { |i|
 z = 5 / i # Will eventually raise ZeroDivisionError
 face = entities.add_face([0, 0, z], [0, 9, z], [9, 9, z], [9, 0, z])
 face.set_attribute('Example', 'Hello', "World #{i}")
 }
 # This will not be reached when the error is raised - leaving the Ruby
 # operation open!
 model.commit_operation
 end

end # module

Ruby observers are not triggered until the current operation has completed.

cmd = UI::Command.new('Hello World') {
 Example.operation_bad_example
 # Even if this command started an operation which wasn't closed because
 # it was interrupted by an error, any notifications queued up will be
 # dispatched after SketchUp trigger this proc.
}

onTransactionStart(...)

RecordNotification(..)

NotificationManager

onElementAdded(...)

onElementAdded(...)

onElementAdded(...)

onElementAdded(...)

Dispatch(..)

Note that no onTransactionCommit is
sent out at this point because the
operation wasn't ended correctly.

Error SafeNot Error Safe

SU2016 Observer Behaviour

All arguments from an observer events should be validated before
acted upon as there is always the chance the data has expired.

Even if you created the entity there might be observers from other
extensions that modify it before your own observer trigger.

module Example

 class ExampleLayerObserver < Sketchup::EntityObserver
 def onLayerAdded(layers, layer)
 if layer.visible? # <-- Layer might be deleted!
 # Do something...
 end
 end
 end # class

end # module

Since observer events are not queued there's a higher risk of
getting deleted entities if the operation create temporary entities.

However, there has always been the possibility that another
observer remove the entity before your own observer is triggered.

module Example

 class ExampleLayerObserver < Sketchup::EntityObserver
 def onLayerAdded(layers, layer)
 return if layer.deleted? # <-- Always check the validity of entities!
 if layer.visible?
 # Do something...
 end
 end
 end # class

end # module

What might break your extension
We have worked hard to minimize breaking changes to the API, but some were inevitable in order to make them safe from crashing, memory corruption and interfering with the
undo stack. Breaking changes should mainly manifest itself in code which isn't correctly handling operations and observer events.

However, there might be subtle changes that could break seemingly harmless code which didn't validate the observer parameters.

SU2016SU2015

SU2016 Observer Behaviour

class Sketchup::EntitiesObserver

 def onActiveSectionPlaneChanged(entities)
 end

 def onElementAdded(entities, entity)
 end

 def onElementModified(entities, entity)
 end

 def onElementRemoved(entities, entity_id)
 end

 def onEraseEntities(entities)
 end

end # class

class Sketchup::EntitiesObserver

end # class

Dummy events from Observer base classes removed
If you inspect the methods defined for the Observer base classes, such as Sketchup::EntityObserver, Sketchup::LayersObserver you will find that in SU2016 they are gone. This
was done in order to optimize the way we send notifications. When the dummy methods are not predefined we are able to determine which events are actually listened to by
the API user and which is ignored. This allows us to optimize the way we record and dispatch notifications.

Based on our evaluation we could not find any extensions that relied on the dummy methods being there. However, should this have an impact on you, please report back to
the team describing your use case.

Notice the observer returns a new Ruby object which isn't marked as deleted.

SketchUp 2016 Result

Example

SU2016 Observer Behaviour
Busting the Zombie Entity Apocalypse

module Example

 class ExampleEntityObserver < Sketchup::EntityObserver
 def onEraseEntity(entity)
 puts "onEraseEntity(#{entity})"
 puts "> Deleted: #{entity.deleted?}"
 end
 end # class

 # Example.zombie_entities
 def self.zombie_entities
 puts "SketchUp version: #{Sketchup.version.to_i}"
 model = Sketchup.active_model
 edge = model.active_entities.add_line([0, 0, 0], [9, 9, 9])
 observer = ExampleEntityObserver.new
 edge.add_observer(observer)
 puts "Removing entity: #{edge}"
 edge.erase!
 ensure
 edge.remove_observer(observer) if edge.valid?
 end

end # module

SketchUp version: 16
Removing entity: #<Sketchup::Edge:0x0000000a4fcdb0>
onEraseEntity(#<Deleted Entity:0xa4fcdb0>)
> Deleted: true

SketchUp 2015 Result

SketchUp version: 15
Removing entity: #<Sketchup::Edge:0x0000000b5574f8>
onEraseEntity(#<Sketchup::Edge:0x0000000b5571b0>)
> Deleted: false

The observer now correctly returns the correct Ruby object marked as deleted.

In previous versions of SketchUp you might get a new Ruby object for entities that has been deleted and they would not always be marked as deleted. This was a source to
crashes and memory corruption that could result in odd bugs like Sketchup::Face.edges returning an array that didn't contain only Sketchup::Edge objects.

This should now we fixed. If you observe such behaviour in SU2016 and beyond please report the issue back to the SketchUp team.

Known Issues (SU2016 Alpha 1)

‣ Zombie Sketchup::Axes
‣ Zombie Sketchup::Page
‣ Zombie Sketchup::Material

Recommended PatternBad Behaviour

Operations — Best Practices

Note the error handling that aborts the operation upon errors.

module Example

 def self.operation_bad_behaviour
 model = Sketchup.active_model
 entities = model.active_entities
 # This will create 10 items on the undo stack, one per face and one per
 # attribute. This makes it hard for users to revert action that modifies
 # the model.
 5.times { |i|
 face = entities.add_face([0, 0, i], [0, 9, i], [9, 9, i], [9, 0, i])
 face.set_attribute('Example', 'Hello', "World #{i}")
 }
 end

end # module

module Example

 def self.operation_best_practice
 model = Sketchup.active_model
 entities = model.active_entities
 model.start_operation('Hello World', true)
 begin
 5.times { |i|
 face = entities.add_face([0, 0, i], [0, 9, i], [9, 9, i], [9, 0, i])
 face.set_attribute('Example', 'Hello', "World #{i}")
 }
 rescue
 model.abort_operation
 raise
 end
 model.commit_operation
 end

end # module

Rule 1: One user action should produce only one undo action
Being able to undo is a critical part of the user experience. A user should be able to safely use any tool or function and easily undo the action in one step. Without this the user
risk losing their work since last save if the operation didn't produce the desired result and flooded the undo stack.

Beware that setting attributes are also undoable actions.

User Draws Rectangle

Recommended Pattern

Operations — Best Practices

module Example

 # Note: This example is valid for SU2016+ only! Older versions needs a
 # different pattern: https://github.com/SketchUp/sketchup-safe-observer-events
 class ExampleLayerObserver < Sketchup::EntityObserver
 def onLayerAdded(layers, layer)
 # Make sure the entity is valid.
 return if layer.deleted?
 model = layer.model
 # When starting a new operation the first argument will not be visible
 # to the user.
 # Note: Never user the third argument! It's notoriously difficult to use
 # as one cannot be sure what is the next operation.
 # The important argument here, for starting operations in observer events
 # is the fourth one - making the operation transparent to the previous.
 model.start_operation('Hello World', true, false, true)
 begin
 layer.set_attribute('Example', 'Hello', "World")
 rescue
 # Note: Never abort a transparent operation, it will abort the operation
 # it chains to. Instead, try to clean up and simply commit in order to
 # make sure the operation is closed.
 model.commit_operation
 raise
 end
 model.commit_operation
 end
 end # class

end # module

Rule 2: Observers should create transparent operations
Making changes to the model based on observer events is challenging.

Prior to SU2016 one should never do model changes directly in the observer
callback as that could crash SketchUp or disrupt the undo stack.
For these older versions one should follow the pattern outlined in this GitHub
repository: https://github.com/SketchUp/sketchup-safe-observer-events

In SU2016 this is now possible, but one must make sure to make the operation
transparent so that it doesn't add extra undo steps for the user.

NotificationManager

Ruby API Observer #1

Ruby API Observer #2

Transparent Operation

Transparent Operation

Ruby API Observer #3

Operation: "Rectangle"

Ruby API Observer #4

Operation: "Adjust Rect"

In this diagram Observer #4 creates a non-
transparent operation which leads to the
user action producing two undo operations
- which is bad behaviour.

https://github.com/SketchUp/sketchup-safe-observer-events

